3. When volume becomes $1 / 8^{\text {th }}$ radius becomes $1 / 250$ $V_{T} \rightarrow V_{T / 4}$ so time needed will betimes $\therefore 40 \times 4=160$.
4. $\lambda_{1}=\frac{c}{n}, \lambda_{2}=\frac{c / \sqrt{\epsilon}}{n} \therefore \lambda_{2}-\lambda_{1}=\frac{c}{n}\left(\frac{1}{\sqrt{\epsilon}}-1\right)=\frac{3 \times 10^{8}}{3 \times 10^{6}}\left[\frac{1}{4}-1\right] ;<-1$ $\therefore-75 \mathrm{~m}$.
5. (C) is incorrect unit is asked not dimension.
6. $P_{A V}=120 \times 10^{3} ; \therefore i=\frac{P}{V}=\frac{120 \times 10^{3}}{240}=500 A \therefore P_{105 s}=i^{2} R$

$$
=(500)^{2} \cdot(0 \cdot 4)=100 \mathrm{~kW} .
$$

18. $u_{x}=36 ; u_{y}=\frac{96}{2}=48$

19. A : is because of quantum cond not classical.
20. $L=\frac{\mu N^{2} A}{l}$
21. A is incorrect minimum is asked so the one which give minimum product.
22. $V_{h}=\frac{-G M}{R+h}, \delta_{h}=\frac{G M}{(R+h)^{2}} \therefore R+h=-\frac{V_{h}}{g_{h}}$

$$
\begin{aligned}
& V_{h}=-\frac{V_{1}}{R+h}, G_{h}(R+h)^{2} 66{ }^{6}-6.4 \times 10^{6}=2600 \mathrm{~km} . \\
& \therefore h=-\frac{V_{h}}{g_{h}}-R=9 \times 10^{-} \quad R-x \quad \therefore x=R \sqrt{M_{1}}
\end{aligned}
$$

40. $\frac{G M_{1}}{x^{2}}=\frac{G M_{2}}{(R-x)^{2}} \therefore \frac{\sqrt{M_{2}}}{\sqrt{M_{1}}}=\frac{R-x}{x} \quad \therefore x=\frac{R \sqrt{M_{1}}}{\sqrt{M_{2}}+\sqrt{M_{1}}}$
\& potential $=-\left(\frac{G M_{1}}{x_{1}}+\frac{G M_{2}}{R-x_{1}}\right)$
41. $\mu=\frac{4}{3}=\left(\sin i_{c}\right)^{-1}$

$$
\begin{aligned}
& \text { 43. } \mu=\frac{4}{3}=\left(\sin i_{c}\right)^{-1} \\
& \therefore \sin i_{c}=\frac{3}{4} \Rightarrow \operatorname{cosic}=\sqrt{1-\frac{9}{16}} 8^{0} \\
& J_{1}-\frac{9}{16}=\frac{80}{\sqrt{r^{2}+80^{2}}} \therefore 1-\frac{9}{16}=\frac{(\cdot 80(80)}{r^{2}+(80)^{2}}=\frac{7}{16} \therefore r= \\
& \text { 48. } \mu=\frac{x}{6}=\frac{15-x}{4} \therefore x=9 \text { now } \mu=\frac{9}{6}=1.5 \\
&
\end{aligned}
$$

48. Dir of propagation of $E M$-ware is $\bar{E} \times \bar{B}$ hence is

$$
(-j+k) \times(-j-k)=2 i
$$

CHEMISTRY (SECTION - A)

51. How many carbon atoms are present in 0.35 mol of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}{ }^{-}$
(A) 6.023×10^{23} carbon atoms
(B) 1.26×10^{23} carbon atoms
1.26×10^{24} carbon atoms
(D) 6.023×10^{24} carbon atoms

Sol. (C)
$\therefore 1$ mol of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ has $=6 \mathrm{~N}$ atoms of C
$\therefore 0.35 \mathrm{~mol}$ of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ has
$=6 \times 0.35 \mathrm{~N}$ atoms of C
$=2.1 \mathrm{~N}$ atoms
$=2.1 \times 6.023 \times 10^{23}=1.26 \times 10^{24}$ carbon atoms
52. The mass of carbon present in 0.5 mole of $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ is
(a) 1.8 g
(b) $18 g$
(c) 3.6 g
(d) 36 g

Solution: (d)

1 mole of $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]=6 \mathrm{gm}$ atoms of carbon
0.5 mole of $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]=3 \mathrm{gm}$ atoms of carbon
$=3 \times 12=36 \mathrm{~g}$
53. If the radius of $2^{\text {nd }}$ Bohr orbit of hydrogen atom is r_{2}. The radius of third Bohr orbit will be
(a) $\frac{4}{9} r_{2}$
(b) $4 r_{2}$
(c) $\frac{9}{4} r_{3}$
(d) $9 r_{2}$

Solution : (c) $r=\frac{n^{2} h^{2}}{4 \pi^{2} m Z e^{2}} \quad \therefore \frac{r_{2}}{r_{3}}=\frac{2^{2}}{3^{2}} \quad \therefore r_{3}=\frac{9}{4} r_{2}$
54. Electron, Proton and Neutron were respectively discovered by -
(A) James Chadwick, John Dalton, J.J. Thomson
(B) J.J. Thomson, Goldstein, John Dalton
(C) J.J. Thomson, William Crookes, Goldstein
(D) J.J. thomson, Goldstein , James Chadwick
55. For a reaction at $25^{\circ} \mathrm{C}$ enthalpy change and entropy change are $-11.7 \times 10^{3} \mathrm{~J} \mathrm{~mol}^{-1}$ and $-105 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ respectively, what is the Gibb's free energy.
(a) 15.05 kJ
(b) 19.59 kJ
(c) 2.55 kJ
(d) 22.55 kJ

Solution: (b)
$\Delta G=\Delta H-T \Delta S, \quad T=25+273=298 K$
$\Delta G=-11.7 \times 10^{3}-298 \times(-105)=19590 \mathrm{~J}=19.59 \mathrm{~kJ}$
56. Given that $\mathrm{C}(\mathrm{g})+4 \mathrm{H}(\mathrm{g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g}) ; \quad \Delta H=-166 \mathrm{~kJ}$. The bond energy $\mathrm{C}-\mathrm{H}$ will be
(a) $208 \mathrm{~kJ} / \mathrm{mol}$
(b) $-41.5 \mathrm{~kJ} / \mathrm{mol}$
(c) $832 \mathrm{~kJ} / \mathrm{mol}$
(d) None of these

Solution: (b)
$C_{(g)}+4 H(g) \rightarrow \mathrm{CH}_{4}(g) ; \Delta H=-166 \mathrm{~kJ}$
Bond energy for $C-H=-\frac{166}{4}=-41.5 \mathrm{~kJ} / \mathrm{mole}$
57. A mixture of 0.3 mole of H_{2} and 0.3 mole of I_{2} is allowed to react in a 10 litre evacuated flask at $500^{\circ} \mathrm{C}$. The reaction is $\mathrm{H}_{2}+I_{2} \rightleftharpoons 2 \mathrm{HI}$ the K_{c} is found to be 64 . The amount of unreacted I_{2} at equilibrium is
(a) 0.15 mole
0.06 mole
(c) 0.03 mole
(d) 0.2 mole

Solution: (b)
$K_{c}=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[I_{2}\right]} ; 64=\frac{x^{2}}{0.03 \times 0.03}$
$x^{2}=64 \times 9 \times 10^{-4} ; x=8 \times 3 \times 10^{-2}=0.24$
x is the amount of HI at equilibrium. Amount of I_{2} at equilibrium will be
$0.30-0.24=0.06$ mole
58. If the solubility product $K_{s p}$ of a sparingly soluble salt $M X_{2}$ at $25^{0} C$ is 1.0×10^{-11}, the solubility of the salt in mole litre ${ }^{-1}$ at this temperature will be
(a) 2.46×10^{14}
1.36×10^{-4}
(c) 2.60×10^{-7}
(d) 1.20×10^{-10}

Solution: (b)
$M X_{2} \rightleftharpoons M^{+2}+2 X^{-}$
(S) $\quad(2 S)^{2}$
$K_{s p}=4 S^{3}$
$S=3 \sqrt{\frac{K_{s p}}{4}}=3 \sqrt{\frac{1 \times 10^{-11}}{4}}=1.36 \times 10^{-4}$
59. For preparing a buffer solution of pH 6 by mixing sodium acetate and acetic acid, the ratio of the concentration of salt and acid should be ($K_{a}=10^{-5}$)
(a) $1: 10$
(b) $10: 1$
(c) $100: 1$
(d) $1: 100$

Solution: (b)
$K_{a}=10^{-5} ; p H=6$
pH $=-\log K_{a}+\log \frac{[\text { salt }]}{[\text { acid }]}$ or $6=-\log 10^{-5}+\log \frac{[\text { salt }]}{[\text { acid }]}$
or $6=5 \log 10+\log \frac{[\text { salt }]}{[\text { acid }]}$ or $6=5+\log \frac{[\text { salt }]}{[\text { acid }]}$
or $\log \frac{[\text { salt }]}{[\text { acid }]}=6-5=1$ or $\frac{[\text { salt }]}{[\text { acid }]}=\frac{10}{1}$
60. Amongst the following identify the species with an atom in +6 oxidation state -
(a) MnO_{4}^{-}
(b) $\mathrm{Cr}(\mathrm{CN})_{6}^{3-}$
(c) $\mathrm{NiF}_{6}{ }^{2-}$
$\mathrm{CrO}_{2} \mathrm{Cl}_{2}$
61. Lowering in vapour pressure is the highest for
(a) 0.2 m urea
(b) 0.1 m glucose
(c) $0.1 \mathrm{~m} \mathrm{MgSO}_{4}$
d) $0.1 \mathrm{mBaCl}_{2}$

Solution: (d)
$\frac{P_{A}^{0}-P_{A}}{P_{A}^{0}}=$ Molality $\times(1-\alpha x+x \alpha+\gamma x)$
The value of $P_{A}^{0}-P_{A}$ is maximum for BaCl_{2}.
62. The molal freezing point constant for water is $1.86^{\circ} \mathrm{C} / \mathrm{m}$. Therefore, the freezing point of 0.1 M NaCl solution in water is expected to be
(a) $-1.86^{\circ} \mathrm{C}$
(b) $-0.186^{\circ} \mathrm{C}$
(c) $-0.372^{\circ} \mathrm{C}$
(d) $+0.372^{\circ} \mathrm{C}$

Solution: (c)
$\Delta T_{f}=i K_{f} m=2 \times 1.86 \times 0.1=0.372$
$T_{f}=-0.372^{\circ} \mathrm{C}$
63. 2.5 Faradays of electricity is passed through a solution of CuSO_{4}. The number of gram equivalents of copper deposited on the cathode would be
(a) 1
(b) 2
c) 2.5
(d) 1.25

Solution (c) Number of Faraday passed = Number of equivalents deposited.
64. The equivalent conductivity of $0.1 M$ weak acid is 100 times less than that at infinite dilution. The degree of dissociation is
(a) 100
(b) 10
0.01
(d) 0.001

Solution: (c)
$\alpha=\frac{\Lambda_{m}^{c}}{\Lambda^{0}}=\frac{x / 100}{x}=\frac{1}{100}=0.01$.
65. If $3 A \rightarrow 2 B$ then the rate of reaction of $+\frac{d(B)}{d t}$ is equal to
(a) $+2 \frac{d(A)}{d t}$
(b) $-\frac{1}{3} \frac{d(A)}{d t}$
(c) $-\frac{2}{3} \frac{d(A)}{d t}$
(d) $-\frac{3}{2} \frac{d(A)}{d t}$

Solution: (c)

$3 A \rightarrow 2 B ;$ Rate $=-\frac{1}{3} \frac{d[A]}{d t}=\frac{1}{2} \frac{d[B]}{d t} ; \therefore+\frac{d[B]}{d t}=-\frac{2}{3} \frac{d[A]}{d t}$
66. For a reaction $A+2 B \rightarrow C+D$, the following data were obtained

Expt. Initial concentration $\left(\right.$ moles litre $\left.{ }^{\mathbf{- 1}}\right)$		Initial Rate of formation of \boldsymbol{D} $\left(\right.$ moles litre $\left.^{\mathbf{- 1}} \boldsymbol{\text { min }}^{\mathbf{- 1}}\right)$	
S. No.	$[\boldsymbol{A}]$	$[\boldsymbol{B}]$	
1.	0.1	0.1	6.0×10^{-3}
2.	0.3	0.2	7.2×10^{-2}
3.	0.3	0.4	2.88×10^{-1}
4.	0.4	0.1	2.4×10^{-2}

The correct rate law expression will be
(a) Rate $=k[A][B]$
b) Rate $=k[A][B]^{2}$
(c) Rate $=k[A]^{2}[B]^{2}$
(d) Rate $=k[A]^{2}[B]$

Solution: (b)
From 1 and 4, keeping $[B]$ constant, $[A]$ is made 4 times, rate also becomes 4 times. Hence rate $\propto[A]$. From 2 and 3 keeping $[A]$ constant, $[B]$ is doubled, rate becomes 4 times. Hence rate $\propto[B]^{2}$. Overall rate law will be : rate $=k[A][B]^{2}$.
67. Match list-I with list-II and select the correct answer using the codes given below:

List-I

 (element)(a) Gallium
(b) Vanadium
(c) Zinc
(d) Scandium

Codes -

	(a)	(b)	(c)	(d)
(a)	ii	i	iii	iv
(b)	iii	iv	i	ii
(c)	iii	iv	ii	i
(d)	i	ii	iv	iii

68. The incorrect statement among the following is-
(a) The properties of elements are periodic function of their atomic numbers
(b) Among the isoelectric species, $\mathrm{Na}^{+}, \mathrm{Mg}^{2+}$ and Al^{3+} ion having smalles radius is Al^{3+} ion

The outer most electronic configuration of group 15 elements is $\mathrm{ns}^{2} \mathrm{np}^{5}$
(d) Electronegativity of an element depend upon its atomic size
69. Four elements A (with one valence electron), B (with three valence electrons), C (with five valence electrons) and D (with seven valence electrons) are lying in the second period which of periodic table which of the following is/are diatomic at room temperature:
(a) Only C_{2}
(b) Only A_{2}
c) C_{2} and D_{2}
(d) Only B_{2}
70. The bond angless of NH_{3}, and are in the order:
(a) $\mathrm{NH}_{2}^{-}>\mathrm{NH}_{3}>\mathrm{NH}_{4}^{+}$
(b) $\mathrm{NH}_{4}^{+}>\mathrm{NH}_{3}>\mathrm{NH}_{2}^{-}$
(c) $\mathrm{NH}_{3}>\mathrm{NH}_{2}^{-}>\mathrm{NH}_{4}^{+}$
(d) $\mathrm{NH}_{3}>\mathrm{NH}_{4}^{+}>\mathrm{NH}_{2}^{-}$
71. $\mathrm{T} \ell \mathrm{I}_{3}$ is an ionic compound which furnishes the following ions in solution :
(a) $\mathrm{T} \ell^{3+}$ and I^{-}ions
$\mathrm{T} \ell^{+}$and $\mathrm{I}_{3}{ }^{-}$ions
(c) $\mathrm{T} \ell^{+}, \mathrm{I}^{-}$ions and I_{2}
(d) $\mathrm{T} \ell^{+}$and I^{-}ions
72. Carbon has no tendency to form complex compounds because of :
(a) Its small size
(b) The availability of vacant d-orbitals
Non availability of vacant d-orbitals
(d) No tendency to form covalent bonds
73. The chemical name of bleaching powder is -
(a) Calcium hypochlorite
b) Calcium chlorohypochlorite
(c) Calcium chlorate
(d) Calcium perchlorate
74. The increasing thermal stability of the hydrides of group 16 follows sequence -
(a) $\mathrm{H}_{2} \mathrm{O}<\mathrm{H}_{2} \mathrm{~S}<\mathrm{H}_{2} \mathrm{Se}<\mathrm{H}_{2} \mathrm{Te}$
(b) $\mathrm{H}_{2} \mathrm{Te}<\mathrm{H}_{2} \mathrm{Se}<\mathrm{H}_{2} \mathrm{~S}<\mathrm{H}_{2} \mathrm{O}$
(c) $\mathrm{H}_{2} \mathrm{~S}<\mathrm{H}_{2} \mathrm{O}<\mathrm{H}_{2} \mathrm{Se}<\mathrm{H}_{2} \mathrm{Te}$
(d) $\mathrm{H}_{2} \mathrm{Se}<\mathrm{H}_{2} \mathrm{O}<\mathrm{H}_{2} \mathrm{~S}<\mathrm{H}_{2} \mathrm{Te}$
75. Lanthanide contraction is due to increase in -
(a) Shielding by $4 f$ electrons
(b) Atomic number
c) Effective nuclear charge
(d) size of 4 f-orbital
76. From the stability constant (hypothatical values) given below, predict which is the strongest ligand -
(a) $\mathrm{Cu}^{2+}+4 \mathrm{NH}_{3} \rightleftharpoons\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right) 4\right]^{2+},\left(\mathrm{K}=4.5 \times 10^{11}\right)$
(b) $\mathrm{Cu}^{2+}+4 \mathrm{CN}^{-} \rightleftharpoons[\mathrm{Cu}(\mathrm{CN}) 4]^{2-},\left(\mathrm{K}=2.0 \times 10^{27}\right)$
(c) $\mathrm{Cu}^{2+}+2 \mathrm{en} \rightleftharpoons\left[\mathrm{Cu}(\mathrm{en})_{2}\right]^{2+},\left(\mathrm{K}=3.0 \times 10^{15}\right)$
(d) $\mathrm{Cu}^{2+}+4 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+},\left(\mathrm{K}=9.5 \times 10^{8}\right)$
77. Which statement is incorrect -
$\mathrm{Ni}(\mathrm{CO})_{4}$ - Tetrahedral, paramagnetic
(b) $\left[\mathrm{Ni}\left(\mathrm{CN}_{4}\right)\right]^{-2}-$ Square planar, diamagnetic
(c) $\mathrm{Ni}(\mathrm{CO})_{4}$ - Tetrahedral, diamagnetic
(d) $\left[\mathrm{NiCl}_{4}\right]^{-2}-$ Tetrahedral, paramagnetic
78. A salt gives violet vapours when treated with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$. It contains
(a) Cl^{-}
I^{-}
(c) Br^{-}
(d) NO_{3}^{-}
79. The ion that cannot be precipitated by both HCl and $\mathrm{H}_{2} \mathrm{~S}$ is
(a) Pb^{2+}
(b) Cu^{+}
(c) Ag^{+}
(d) Sn^{2+}
80. The IUPAC name for -

(a) 2-chloro-3-bromo-3-butenal
(b) 2-chloro-3-bromo-3-butene carbaldehyde
(c) 3-bromo-2-chloro-3-butenal
(d) 3-bromo-2-chloro-3-butenone

Sol. (C)

3-bromo-2-chloro-3-butenal
81. Tautomerism will be explained by -
(a) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$
(b) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CNO}$
(c) $\mathrm{R}_{3} \mathrm{CNO}_{2}$
(d) $\mathrm{RCH}_{2} \mathrm{NO}_{2}$
82. In organic compounds P is estimated as-
(a) $\mathrm{H}_{3} \mathrm{PO}_{4}$
(b) $\mathrm{P}_{2} \mathrm{O}_{5}$
(c) $\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
$\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4} \cdot 12 \mathrm{MoO}_{3}$
83.

$\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{COOH}$

(III)
(I)
(II)

Arrange following acid in decreasing order of $\left[\mathrm{H}^{+}\right]$conc.
I > II > III
(b) II $>$ III $>$ I
(c) II $>$ I $>$ III
(d) III $>$ II $>$ I
84. (I)

(II)

(III)

(IV)

The correct order of decreasing basicity of the above compound is -
(a) I $>$ II $>$ III $>$ IV
b) II $>$ I $>$ IV $>$ III
(c) III $>$ IV $>$ II $>$ I
(d) II $>$ I $>$ III $>$ IV
85. Lindlar's catalyst consists of -
(a) Metallic nickel + nickel boride
(b) Metallic platinum

Metallic palladium deposited on calcium carbonate containing lead acetate and quinoline
(d) Sodium borohydride in ethanol.

SECTION - B (Attempt any 10 questions)

86. Ethylene forms ethylene chlorohydrin by the action of -
(a) Dry HCl gas
(b) Dry chlorine gas
Solution of chlorine gas in water
(d) None
87. $\mathrm{CH}_{3} \mathrm{Br} \xrightarrow{\mathrm{KCN}} \mathrm{A} \xrightarrow{+4 \mathrm{H}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}$

IUPAC name of A is -
(a) Methyl cyanide
(b) Mehyl isonitrile
(c) Acetonitrile
d) Ethane nitrile
88. Kolbe's reaction consists in obtaining -
(a) Anisol from phenol
Salicylaldehyde from phenol and CHI_{3}
(c) Salicylic acid from sodium phenate and CO_{2}
(d) Salicylic acid from phenol and CO_{2}
89. In Cannizzaro reaction-

Aldehyde is converted into alcohol
(b) Alcohol is converted into aldehyde
(c) Primary amine is converted into isocyanide
(d) Acid is converted into amine
90. $\mathrm{A}+2 \mathrm{Na}+\mathrm{ICH}_{3} \xrightarrow[\text { ether }]{\text { dry }} \underset{\text { B }}{\mathrm{Cr}_{2} \mathrm{O}_{3}}{\underset{\mathrm{C}}{6} \mathrm{H}_{5} \mathrm{CH}_{3}+\mathrm{NaBr}+\mathrm{NaI}}_{\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}}$

Identify A and B -
(a) A is $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$ and B is $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$
(b) A is $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br}$ and B is $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$
(c) A is $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$ and B is $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}$
(d) A is $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br}$ and B is $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}$
91. Which of the following compounds possesses a chiral nitrogen atom?
(a)

(b) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NHCH}_{2} \mathrm{CH}_{3}$

(d)

92. In RNA, which base is found in place of thymine of DNA-
(a) Adenine
(b) Uracil
(c) Pyridine
(d) Guanine
93. B

A and B are geometrical isomers $(\mathrm{R}-\mathrm{CH}=\mathrm{CH}-\mathrm{R})$ -
(a) A is trans, B is cis
(b) A and B both are cis
(c) A and B both are trans
(d) A is cis, B is trans
94. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH} \xrightarrow{(\mathrm{A})} \mathrm{C}_{6} \mathrm{H}_{6} \xrightarrow[\text { anhy. } \mathrm{AlCl}_{3}]{\mathrm{CO}+\mathrm{Cl}}$ (B)

In the above reaction sequence A and B are-
(a) Red P + HI and benzoic acid
(b) Red P + HI and benzaldehyde
(c) Zn powder and benzaldehyde
(d) Zn powder and benzoic acid
95. Acetone gives test with
(a) 2, 4-dinitrophenyl hydrazine
(b) Fehling solution
(c) Schiff's reagent
(d) All of these
96. $\xrightarrow[25^{\circ} \mathrm{C}]{\mathrm{AlCl}_{3} \cdot \mathrm{HCl}} \mathrm{A}, \mathrm{A}$ is -
(a)

(b)

(d)

97. Carbon suboxide $\left[\mathrm{C}_{3} \mathrm{O}_{2}\right]$ has :
(a) Bent structure
(b) Trigonal planar structure
(c) Linear structure
(d) Distorted tetrahedral structure
98. One mole of a solute A is dissolved in a given volume of a solvent. The association of the solute takes place according to $n A \rightleftharpoons(A)_{n}$ The Van't Hoff factor ' i ' is expressed as
(a) $i=1-x$
(b) $i=1+\frac{x}{n}$
(c) $i=\frac{1-x+\frac{x}{n}}{1}$
(d) $i=1$
99. Leaving one system, rest solar system is known as
(a) Open system
(b) Isolated system
Surroundings
(d) None of these
100. Which of the following aqueous solutions remains neutral after electrolysis
(a) CuSO_{4}
(b) AgNO_{3}
$\mathrm{K}_{2} \mathrm{SO}_{4}$
(d) NaCl

101 - b, spindle fibres for mitosis consist of microtubules. So if microtubules are depolymerized, chromosomes cannot be brought at equator or chromatids cannot be separated
102 - c, NCERT $11^{\text {th }}$, page 19
103 - d
104 - b, In any type of cell, aerobic respiration will produce maximum number of ATP
$105-\mathrm{b}$, NCERT 11 ${ }^{\text {th }}$, page 210, fig. 13.3.Terrestrial plants do not absorb green light but reflect it.
106 - c, NCERT $11^{\text {th }}$, page 208
107 - d, NCERT $11^{\text {th }}$, page 33
108 - b, NCERT $11^{\text {th }}$, page 43
109 - c, NCERT $11^{\text {th }}$, page 36
110 - c, NCERT $11^{\text {th }}$, page 81
111 - c , as mature mRNA can have UTRs also, so not always 99 amino acids can be coded. A single stop
codon will not code for any amino acid
112 - c, NCERT $12^{\text {th }}$, page 111
113 - c, Cytokinesis breaks finally one cell into 2 thus generating 2 new cells from parent cell
114 - b, NCERT $11^{\text {th }}$, page 170
$115-\mathrm{a}$, NCERT $12^{\text {th }}$, page 76
$116-\mathrm{c}$, Cross will be between parents $\mathrm{X}^{\mathrm{h}} \mathrm{X}$ and XY then the given progeny will be produced
117-b
118 - d, Only in sex -linked trait , the offspring genotypes will not be same in F1 generation of reciprocal cross
$119-\mathrm{b}$, NCERT $12^{\text {th }}$, page $100,109,121$
120 - c
121- d, NCERT $12^{\text {th }}$, page 101
122 - c, NCERT $12^{\text {th }}$, page 118
$123-\mathrm{d}$, NCERT $12^{\text {th }}$, page 32 , fig. 2.12 d and e
124- a, NCERT $12^{\text {th }}$, page 25
125- b, NCERT $12^{\text {th }}$, page 29
126-c, NCERT 12 ${ }^{\text {th }}$, page 265
127 - d, NCERT $12^{\text {th }}$, page 265
128-b, NCERT $12^{\text {th }}$, page 267
129-d
130 - c, NCERT $12^{\text {th }}$, page 234
131 - b, NCERT $12^{\text {th }}$, page 182 , NCERT $11^{\text {th }}$, page 230
132 - d, NCERT $11^{\text {th }}$, page 247
133 - c, NCERT $11^{\text {th }}$, page 248
$134-$ d, NCERT $11^{\text {th }}$, page 88,89
$135-\mathrm{c}$, NCERT $11^{\text {th }}$, page 91
$136-\mathrm{d}$, as genus is same
137 - a, NCERT $12^{\text {th }}$, page 115
138-d
$139-\mathrm{b}$, NCERT $12^{\text {th }}$, page $247,10 \%$ law
140 - c, NCERT $12^{\text {th }}$, page 250
$141-\mathrm{d}$, NCERT $12^{\text {th }}$, page 231, lag phase is first phase in growth curve when organism first introduced to habitat

142 - a, NCERT $12^{\text {th }}$, page 236
143 - c, NCERT $12^{\text {th }}$,Page 21,23
144 - c , NCERT $12^{\text {th }}$, page 6
145-d
146 - c, NCERT $11^{\text {th }}$, page 245
147 - b, NCERT $11^{\text {th }}$, page 97,192
148 - a, NCERT $12^{\text {th }}$, page 262
149 - d, NCERT $11^{\text {th }}$
150 - a
$151-\mathrm{c}$, Lactose is made up of galactose and glucose with glycosidic bond between them, NCERT $12^{\text {th }}$, page
116
152 - d
153 - c
$154-$ d, NCERT $11^{\text {th }}$, page 287,336
155 - c
156 - b, NCERT $11^{\text {th }}$, page 144
157 - c, NCERT $12^{\text {th }}$, page 152
$158-\mathrm{a}$, as oxygen brought in is utilized by kidney cells and urea removed by excretion
159 - d, NCERT $11^{\text {th }}$, page 316
160 - b, NCERT $12^{\text {th }}$, page 195
161 - a, NCERT $12^{\text {th }}$, page 61
$162-\mathrm{b}$, NCERT $11^{\text {th }}$, page 158 , transfer of amino group from one substrate to other
163 - c, NCERT $12^{\text {th }}$, page 151
164 - c, NCERT $12^{\text {th }}$, page 149
165 - d, NCERT $12^{\text {th }}$, page 151
166 - d, NCERT $12^{\text {th }}$, page 50
167 - c, NCERT $12^{\text {th }}$, page 53
$168-\mathrm{a}$, NCERT $12^{\text {th }}$, page 43 fig. 3.1 a and b
$169-\mathrm{b}$,
170 - d, NCERT $12^{\text {th }}$, page 50
171 - d, NCERT $12^{\text {th }}$, page 62
172 - b, NCERT $11^{\text {th }}$, page 334
173 - b, NCERT $11^{\text {th }}$, page 339
174 - c, NCERT $11^{\text {th }}$, page 337, 338
175 - d, NCERT $11^{\text {th }}$, page 270
176 - b, NCERT $11^{\text {th }}$, page 50
177 - d, NCERT $11^{\text {th }}$, page 57
178 - c, NCERT $12^{\text {th }}$, page 64
179 - c, NCERT $11^{\text {th }}$, page 318
180 - b, NCERT $11^{\text {th }}$, page 49
181 - b
182 - c, NCERT $12^{\text {th }}$, page 212
183 - b, NCERT $11^{\text {th }}$, page 294, 297
184 - d, NCERT $11^{\text {th }}$, page 303

185 - b, NCERT $11^{\text {th }}$, page 303
186 - b, NCERT $12^{\text {th }}$, page 129
187 - d, NCERT $12^{\text {th }}$, page 128
188 - c, NCERT $12^{\text {th }}$, page 132
$189-$ d, NCERT $12^{\text {th }}$, page 139, fig. 7.10
190 - b, NCERT $12^{\text {th }}$, page 201
191 - b
192 - a, NCERT $11^{\text {th }}$, page 113
193 - b, NCERT $11^{\text {th }}$, page 113,114
194 - a
195 - b, NCERT $11^{\text {th }}$, page 312
196 - c, NCERT $11^{\text {th }}$, page 310
197 - c , NCERT $11^{\text {th }}$, page 117, 118
198 - d, NCERT $11^{\text {th }}$, page 102
199 - b
$200-\mathrm{d}$

